ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes
نویسندگان
چکیده
Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP-seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled.
منابع مشابه
Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery.
Transcription factors play an important role in orchestrating the activation of specific networks of genes through targeting their proximal promoter and distal enhancer regions. However, it is unclear how the specificity of downstream responses is maintained by individual members of transcription-factor families and, in most cases, what their target repertoire is. We have used ChIP-chip analysi...
متن کاملThe ETS Transcription Factors ELK1 and GABPA Regulate Different Gene Networks to Control MCF10A Breast Epithelial Cell Migration
Members of the ETS transcription factor family often target the same binding regions and hence have the potential to regulate the same genes and downstream biological processes. However, individual family members also preferentially bind to other genomic regions, thus providing the potential for controlling distinct transcriptional programmes and generating specific biological effects. The ETS ...
متن کاملThe proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites.
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors requi...
متن کاملEvaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...
متن کاملDynamic and complex transcription factor binding during an inducible response in yeast.
Complex biological processes are often regulated, at least in part, by the binding of transcription factors to their targets. Recently, considerable effort has been made to analyze the binding of relevant factors to the suite of targets they regulate, thereby generating a regulatory circuit map. However, for most studies the dynamics of binding have not been analyzed, and thus the temporal orde...
متن کامل